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For a dynamical system subject to uncontrollable interference the problem [1-8] of the control that will guarantee an 
optimum performance index is considered, where the latter is given as a functional of the realized motion. The investigation 
concerns the case in which information about the history of the motion must be used. A functional-theoretic treatment is 
presented, reducing the initial problem to the construction of the upper convex hulls of certain auxiliary functions [7, 9-12] in 
multidimensional spaces. On the other hand, a method for reducing the problem to constructions in a space of much lower 
dimension is developed. The method is demonstrated on problems with typical performance indices. © 1997 Elsevier Science 
Ltd. All fights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Suppose a system is described by the equation 

dx ld t  = A ( t ) x +  f ( t , u , v  ), 0<~ t o <~ t<~ 0 (1.1) 

x ~ R " , u ~  R " , v ~ R  s 

where x is the phase vector, u is the control vector, v is the interference vector, t °, O are given instants 
of time, n, r and s are given natural numbers, A ( t )  and f(t, u, v) are matrix-valued and vector-valued 
functions, respectively, piecewise continuous in t, where f(t, u, v) is jointly continuous in all its arguments 
in its intervals of continuity with respect to t (the discontinuity points with respect to t off(t,  u, v) are 
independent o fu  and v), both functions are continuous from the right at their discontinuity points, and 
u and v obey the constraints 

u e P, v ~ Q (1.2) 

where P and Q ate given compact sets; the saddle-point condition in a small game is satisfied [1; 6, 
p. 79], that is, for any m • / ~  and t • [t °, O] 

min max(m, f ( t ,  u,v )} = max rain(m, f ( t ,  u,u )) 
ueP o eQ v cO u~P 

(1.3) 

where the symbol ( . ,  • ) denotes the scalar product. 
The admissible realizations are Borel-measurable functions u[[- ]O) = {u[t] • P, t o ~< t < •} and 

v[t°[ • ]0) = {u[t] ~ Q, t o ~< t < 0}. These realizations a by (1.1), generate absolutely continuous 
motionsx[t°.[ • ] 0 ] =  (x[t], t o ~< t < O} (the initial s tatex[t~ is given). 

We define the [erformance index T of the motion x[t°[ • ]0] as the functional ~(x[t.°[ • ]0]) with the 
following structure. Choose a natural number N, times t I'1 • [t °, 0], t [i+1] > t Iil, i = 1 . . . .  , N - 1, 
t INI = O, constant matrices D ['] of dimensions pii] x n, 1 ~< p0] ~< n, i = 1 . . . . .  N. The sequence 
{D[1]x[tlll],..., D[~x[ t  [11] forms ap-vector, p = p[1] + . . .  + p[~. Choose some norm ~t(. ) in the space 
R p of all such sequences. Now define 

Y = Y(x[t.0[']O]) = la({Dlllx[t Ill ] ..... Dtnlx[ t tn l ]} )  (1.4) 

This performance index may be specified in advance or the functional is defined as an approximation 
for the initial index T.(x[t.°[ • ]0]), which takes a continuum of values ofx[t] into account. 
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The problem is to find a control (or interference) designed to minimize the index T (1.4) (which itself 
is designed to maximize). 

These problems are combined, according to [7], into a two-person antagonistic differential game (u 
is the first player's move and v that of the second player). For any initial history x[ t°[  • ]t.] (t o ~< 
t. < 0) this game has a value p°(x[t°[ • ]t.]). The game has a saddle point consisting of optimum strategies 
{u°(x[ t°[  • ]t], 8), v°(x[t°[  • It], e}, where x[t°[  • ]t] = {x[x], t o ~< x ~< t is the history of the motion realized 
by the actual time t; e > 0 is some parameter of accuracy [6, 7]. The motions are generated in a discrete- 
time scheme [6, 7]. The optimum strategies u ° and v ° are constructed as extremum strategies [7, p. 150] 
for the functional p0(. ). 

Thus, in order to construct an optimum control and a counter-optimum interference, we need an 
effective way to calculate the value of the game, using each successive history x[t°[  • ]t] as the initial 
history. 

In many cases, in order to construct optimum controls it is sufficient to consider only some part of 
the history up to the actual time t. For example, if the functional "/(1.4) is positional [7, 8], it is sufficient 
to rely on the current position [t, x( t ) ]  only. 

In the differential game under consideration, with condition (1.3) satisfied, the saddle point is reached 
with pure strategies. If condition (1.3) is not satisfied, a solution must be sought in the class of mixed 
strategies [7, 9]. But even then the auxiliary constructions that make up the main part of this paper 
need no significant alteration. 

2 .  F U N C T I O N A L - T H E O R E T I C  T R E A T M E N T  

Suppose that by the time t e [t °, 0] the history actually realized isx[t°[ • ]t]. We will use the term 
functional position corresponding to that history for the sequence {t, z [t]}, where 

i[t] = ( x [ t ] , i [ t ] ) ,  i[t] = {Jill[t] ..... JtNi[t]} (2.1) 

IDt i lx[ t t i ] ] ,  t [ ; ]  ~< t 

.~[ i ] [ t ]  = [ D[ i ]x [ t [ i ] , t ]x [ t ] ,  t < t [i] 

Here X[x, t] is a fundamental matrix of solutions for the equation d x / d x  = A ( x ) x .  
The index T (1.4) may now be written in the form T = lx(i[O]). 
The evolution of the functional position {t, ~[t]} = {t, (x[t], i[t])} is described by Eqs (1.1) 

and 

di [ t l /dt  = k t ,  u, v), to, <~ t ~ 0 (2.2) 

where 

i f t ,  u,v ) = { f~Jf t ,  u,v ) . . . . .  f N l f t ,  u,v )} 

^[i1 . [Dtilx[t  ti] t] f ( t ,u ,v) ,  t < t  ti] 
f ( t ,u ,v)=' i  

[0, t ill <~ t 

(2.3) 

The saddle-point condition in a small game for f(t,  u, v) is satisfied due to (1.3). The initial 
state i [ t  °] = (x[t°], ~[t°]) for system (1.1), (2.2) is uniquely defined by the initial state x [ t ~  of system 
(1.1). 

Let us define a performance index ~ for the motion ~[t°[ • ]0] = {~[t], t o ~< t ~< 0} of system (1.1), 
(2.2) 

,) = , ) ( ~ [ o ] )  = r t ( ~ [ o ] )  (2.4) 

where g ( .  ) is the norm of (1.4). The value of the index ¢/(2.4) is the same as that of T (1.4). 
Let us consider the differential game (1.1), (2.2)-(2.4) in the space of functional positions 

{t,  ~[t]}, but now with the terminal payoff T (2.4). This game has the value I~°(t., i[ t ,])  and a saddle 
point {fi°(t, i [t], e), 13 °(t, ~ [t], e)}, where i I(. ] denotes the initial state of system (1.1), (2.2) and i [t] its 
actual state. The optimum strategies t~ (t, ~[t]), 8) are constructed as extremum strategies [6, 
pp. 210, 220] for the value function i~°(t, ~, [t]). 
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It follows from (1.1)-(1.4) and (2.1)--(2.4) that the value I~°(t, ~.[t]) of game (1.1), (2.2)-(2.4) is 
the same as the value pO(x[t°[ • ]t]) of game (1.1)-(1.4), and strategies that are optimum for game (1.1), 
(2.2)-(2.4), given condition (2.1), will determine actions u and v in the same way as optimum strategies 
for game (1.1)--(1.4). This means that games (1.1)-(1.4) and (1.1), (2.2)-(2.4) are essentially equivalent. 
Therefore, the te~aninal constructions of [6, 9-12] are transformed in a natural manner into constructions 
for the initial game (1.1)-(1.4). It must merely be taken into consideration that, unlike a standard 
differential systelaa, in the case of (1.1), (2.2), (2.3) the possible state £ [t] are not vectors with arbitrary 
components x[t], ~ Itl[t], i = 1 , . . . ,  N but only vectors whose components satisfy conditions (2.1). 

3. C A L C U L A T I N G  T H E  VALUE OF THE G A M E  

Suppose that the realized history of motion of system (1.1) is x[t°[ • ]t.], t o ~< t. < O; according to 
(2.1), this history uniquely defines the functional position {t., £ [t.]} = {t°, (x[t.], i[t.])}. 

Following the method of stochastic programme synthesis [6, p. 380], we introduce the programme 
extremum. To that end we prescribe a partition 

A k =Ak{'[j}={'Cj:'C I = t . ,  "[j+I>Xj,  X j + I - - X j ~ k ,  j = l  ..... k, Xk+ I =O} (3.1) 

of the time interval [t., 0] in which we include all the times t [z] e [t., 0], i = 1 . . . . .  N, of (1.4) and all 
the points of discontinuity of the functionsA(t) andf(t,  u, v). Associated with the partition Ak (3.1) are 
jointly independent random variables (r.v.) {{1, • • •, ~}  uniformly distributed in the interval 0 ~< {j ~< 
1,j = 1 , . . . ,  k. The ordered set {~1,- • -, ~}  will be treated as an elementary event co in a probability 
space {f~, B., P}, where ~ = {co} is the unit cube in k-space, B. is a Borel o-algebra for the cube, and 
P = P(B) is a Lebesgue measure on the cube, B ~ B.. 

Suppose 

_ plil l(co)={ltil(co)~R , i=1 .... N}, o ~ f l  

is ap-dimensional vector random variable defined on {f~, B., P}. The programme extremum e( • ) is 
defined by 

e(x[t°. [.]t, ], A~) = ~(t . , i [ t .  ], A k ) = 

] /+ M I ~  l / j  maxmin(l*(x,,c0), f(x,u,u )>dx i [ t ,  vEQ uEI'X " (3.2) 

where 

Ill()ll = vraimax Ix * ( l ( to)) ,  ! ,  = M{l( to)}  

l *  ('cj,o~) = I* ( x j , ~ l  . . . . .  ~ j )  = M { I ( ~  I . . . . .  ~ ) l ~ l  . . . . .  ~ j} ,  j = I . . . . .  k 

Here the symbol IX*(. ) denotes the norm adjoint to the norm IX(- ) of (1.4). The symbolM{ • } denotes 
the mathematical expectation, and M{ "1" } denotes the conditional mathematical expectation. 

It follows from [6, p. 401] and the equivalence of games (1.1)-(1.4) and (1.1), (2.2)-(2.4) that 

lim e(x[t°.[.]t.],Ak)= lim ~(t.,~[t.],A~) = 
k--+ .8 k ~ 0  k~**.6 k ~ 0  

= I~ 0 ( t , ,  i [ t ,  ]) = p0 (x[  t o [']t, 1) 

By [10], the plrogramme extremum e( • ) (3.2) may be computed recursively by constructing upper 
convex hulls tpj(l) for suitable functions ~j(l), but now with a deterministic argument 1 = {/t*l 
R p[i], i = 1 , . . .  ,N). These hulls must be constructed for eachj  in the domain L = {1: IX*(I) ~< I} of the 
space R e, p = pI~.l + . . .  + pI~. Thus, we obtain 
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e(x[t°.[.]t.],A,)= k(, . , i [ , .  ],A k)= max[(I, l i t . I )+  qh (I)] 
I~L t ~  

We are interested in situations in which the number N, and hence also p, are large. Therefore, if it 
is not possible in some specific situation to find an effective way of constructing the above hulls, the 
computations become intractable even for relatively low dimensions n of the phase vector x. 

It is essential that the computation of e(- ) (3.2) in terms of upper convex hulls 9j(l) in domains L 
of high dimensions may be contracted under fairly general conditions to similar constructions in spaces 
of much lower dimensions. This is because equality (3.2) may be transformed into 

where 

h( t ,  ) . . . 

e(x[t°,[']t,],A,)= sup I • <'[,'],Dt'Ix[t[']]>+ 
"w)lr'~JL ifn 

1] M~ Z S max min(m(xl, to), X[O, x]f(x, u,v ))dx 
L j f f i l  g j V G Q  UEP ~ " 

h(t)= m a x / ,  t [i] ~ t, i f  1 . . . . .  N 

(if there is no i (i = 1 , . . . ,  N) such that t [q ~< t, then h(t) = O) 

I l It. il = M{lti](o~)}, i = 1 ..... h(t .) ,  m.  = M 2~ xr[t[d,O]D ['1 l['](co) 
[ i f h ( t .  )+l j 

m ( ' c / , o ) = M I  ~ Xr[tli|,d]Dtilrlli]({O)l~, ..... ~j} ,  j = l  k ..... 
[ i=h('c j )+1  

(3.3) 

(3.4) 

(the superscript T denotes transposition; Eqs (2.1) and (2.3) are taken into consideration in 0.3)). This 
enables us to work not with functions g-(l) and cp-(l) of the multidimensional vector ! = {/11], ,/IN]} 

. . . J ;t " ' "  
but with suitable functions of the vector 

N 
m = ~,Xr[tlil,O]D°lrl°l, m ~. R" 

i=h('Cj}'l-I 

and of the vectors/[q, i = 1 , . . . ,  h(xy) which involve only some of the components of 1. Moreover, in 
many typical cases it is sufficient to work only with functions of the vector m. "11-u¢, certain additional 
parameters are then necessary. This general statement, formulated here in brief, will be explained later 
in relation to specified material. 

4. P O S I T I O N A L  F U N C T I O N A L S  

Let us consider differential games (1.1)--(1.4) with the following performance indices (1.4) 

N . . 
Yo) = ~t(])(lD[llx[ ttU ] ..... DtIClX[ttN]]}) = Y.gt'l(Di'lx[t [il ]) 

i = 1  
(4.1) 

7(2) = laf2)({Dtqx[t tl]] ..... Ditqx[ttN]]}) = max {Ixtil( Dtilx[tti]])} 
i=l , . . . .N  

(4.2) 

, ,  [ ] [N] [d [d [d ¥(3)=IXC3)({DOlx[ttnl] ..... D x[t ]})= i~(g (D x[t, ]))2 (4.3) 

w h e r e  ~ [ [ i ] (  • ) are certain norms in R e[i], i = 1 , . . . ,  N. 
The functiona. Is 70), Y(2), Y(3) are positional [7, 8], so that a sufficient information image [7, pp. 20, 134] 

for optimum strategies in games (1.1)-(1.4) for (4.1), (4.2) and (4.3) will be the actual position {t, x(t)}. 
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Reduced procedures for constructing the functions ~ (  - ) and their convex hulls 9;( • ) in suitable 
domains Gj for cases with functionals Y(1) and Y(2) are described in detail and rigorousl~ justified in [7]. 
Here we will exhibit a construction for the functional Y(3), following a general scheme of contraction. 
This contraction, on the one hand, allows for the differences between Y(3) and 70), 7(2); on the other 
hand, it retains the general features of the corresponding constructions. 

Accordingly, we consider game (1.1)-(1,4) with the index Y(3) (4.3), The norm ~(~)( • ) adjoint to 
tt(3)( • ) is 

~t,3,(l)=J~-.(la[/]*(l[/]))2J* " - -  " , I={I[i]~R ~'', i=1 ..... N} 
k . / = ]  J '=  

where ~t[z]*( • ), i = 1 . . . . .  N are the norms adjoint to ~t[']( • ). Therefore, when the supremum (3.3) is 
constructed, the r~mdom variables m(xj, to) must obey constraints that depend on the scalars 

V2(l:j, to) ---- 1 - h(~)(~t[i]*(lti](to)))2 
i=l 

It turns out that here, as in [7] for 7(1~ and 7(2~, we can now change from random variables 
• . , , ~  i . x /  g 

/['](to), m(xy, to) and v(xy, to) to deterministic vanables l [~, m and v. Put 

Xj+I 
A y j ( t . , m )  = ~maxmin(m,X[O,'c]f(x,u,v ))dx, m .  R n, j = 1 ..... k 

~jo~Q ueP 

We will now construct a sequence of domains Gj(3)(t.) in the space R n+l of pairs (m, v) and a sequence 
of functions tOj(3)(t.,, m, v), (m, v) e G; (3) (t.), j = k + 1, k, ,1  The construction will be recursive . ,[ . " ' "  • 

with respect to the meshes of the partition Ak {xj} (3.1). 
For j  = k + 1, define 

GkO+)i(t.) = {(re, v):0 ~< v ~  < 1,m = 0}, "ek+l'~(3) ~'.r', re, V) = 0, (re, V)6 ~(3)...k+1 ( t . )  

We proceed by induction. Suppose that for j  + 1 we have already constructed the domain G(~)+l(t.) 
and the function tp(~)+l(t,, m, v), (m, v) e G(~)l(t. ). We first construct the domain Gj(3)(t.) and 
an auxiliary function tp(~)+l(t., m, v), (m, v) e G(~)(t.). On changing from xj+l to xj there are two 
possibilities. In the first, we have h(xj) = h(Xj+l), i.e. Xj+l is not the same as any of the times t [~. We then 
define 

Gj3)(t * ) - G (3) t, (3)' (3) - j+! ~'.), ~j+l (t , ,  m, v) = tpj+l (t , ,  m, v) 

The second possibility is h(xj) = h(xj+l) - 1, that is, xj+l = t [h], h = h(xj) + 1, in which case we define 

G! 3)(t ) = {(m, v):0 <~ v <<- 1, m = m. + xT[t  [hI, O]Dth]Tl, 1 ~ R pthl, .I x , 

(p [hi* (!))2 ~<V 2 -- V.,V.2 ~< V,(m., V . ) ~ G!3+~(tj . )} (4.4) 

~o~3)'(t.,m,v)= max "nO) (t., (m.v) G)3)(t.) j+l ~ t ' j + l  m , , V , ) ,  E 
m~. .v .  

where the maximum defining the auxiliary function tp(~+) 1( • ) is taken over all possible pairs (m., v.) 
corresponding, according to (4.4), to the given pair (m, v) ~ Gj(3)(t.). 

We now define 

(3 ) '  (m,v) 6 G)3)(t,) V~ 3) (t , ,  m, v) = Ayj  (t , ,  m) + tpj+l (t , ,  m, v), 

tP~3)(t,,m,v)={W~3)(t,,.,v)}*6, G= (3) G).v(t,), 0~<v~<l 

where G(3).v(t. ) is 1the section of the domain G(3)j(t.) by a hyperplane v = const. 
Here the symbol[ {V(t., -, V)}*G denotes the upper convex hull of the function ~t(t., m, v) which is 

constructed by taking convex hulls with respect to m in the domain G, with all other arguments fixed. 
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By definition, the upper convex hull is the minimum function concave in m that majorizes the function 
W(t., m, v), rn ~ G. 

Continuing the induction up t o j  = 1, we construct a domain Gl(3)(t.) and function q)l(3)(t., m, v), (m, 
v) ~ Gl(3)(t.). Then the quantity 

e(3)(x[to,[.]t,],Ak)= ma (1--V2)h~)(glil(Dtilx[t[ill)) 2 + 
(m,v)~G~) (t,) i=1 

+<m,X[t~,t.]x[t.]>+(Pl3)(t.,m,v)] 

will have the properties of u- and v-stability [6, 7]. We will not prove this here- - the  proof is similar to 
that given in [7] for games with indices `/(1) and "/(2). In addition, an outline of the proof of these properties 
will be given below, in Section 5, for a more difficult case. 

As in [7], we conclude from these properties that e(3~( • ) approximates the value p0(a)(x[t°[ • ]t.]) of game 
(1.1)-(1.3), (4.3). Thus, the problem reduces to constructing the convex hulls q)~a)(t.,., v) of the functions 
9j(a)(t.,., v) in the domains G~)v(t.), 0 ~< v ~< 1, where the latter are of the same dimensions as that of 
the phase vector x of system (1.1), which is independent of the number N of points t [']. We emphasize 
that here, as in many other cases, including games with indices "/(1) and "/(2), upper convex hulls are 
constructed only for functions of the variable m, for fixed values of v e [0, 1]. This is because the domains 
Gj(a)(t.), j = k + 1 , . . . ,  1, are homogeneous in (m, v), that is, if 

(m, v) ~ G~j3)(t.)then (~m, fly) ~ G~a)(t.), 11 >-- 0, fly ~< 1 (4.5) 

Hence we conclude that the functions (p}3)(t., m, v) , j  = k + 1 , . . . ,  1 will be homogeneous of  degree 
one in the variables (m, v). Therefore, the construction of upper convex hulls of the functions 
~j(3)(/., m, v) in the domains Gj(3)(t.) with respect to the pair (m, v) leads to the very same functions 
(p~3)(t., m, v) that were constructed above by convex closure with respect to m only, in sections of G~),v(t.) 
obtained by fixing v e [0, 1]. 

We have thus presented a construction of the function 91(3)( • ) which, by the foregoing, defines the 
value of the game (1.1)-(1.4) and optimum strategies for the typical index (4.3). 

In what follows, working with specific data, we will show that, generally speaking, the construction 
of the functions (py( - ) requires the application of convex closure with respect to all arguments of a 
space obtained by completing the space R ~ of vectors m by adding auxiliary parameters (such as v). 
This important fact is crucial for the present paper. 

5. N O N - P O S I T I O N A L  F U N C T I O N A L  

Let us consider the system described by the equation 

dxldt = A(t)x + B(t)u + C(t)v, 0 <~ to, <~ t <~ 0 (5.1) 

x ~ R  n, u ~ P c R  r, v ~ Q c R  s 

where A(t), B(t) and C(t) are piecewise continuous matrix functions; as before, P and Q are 
compact sets, and t °, O are fixed 

Two partitions of the time interval [t °, O] are given 

m . [ iq].  " [iq].-[U ~> 0 .[iq+H [iq] Nq|tq I= | tq  .tq t. ,  tq  >lq , iq=l ..... Nq-1} (5.2) 

q = l , 2  

tlil] ;~/[i2], il =1 ..... N t, i 2 =1 ..... N 2 

max{t[N'],t~ N21 } = 0 
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The performance index of the motion of system (5.1) is 

N 
= h,[i2]tr~[i2]~r,,[ i2] T(4)=~t(4)(x[/O[']19]) ~.~Llil](DIiI]xtt}i']])+ max ,v'2 , ' - '2- ' t ,2 ] ) }  

il=l i2=l,...,N 2 
(5.3) 

where Dfl[iq] are known constant pq[iq] x n matrices, 1 ~< pqiiq] <~ n; pq[/q] ( • ) are certain norms, iq = 
1 , . . . ,  Nq, and q := 1, 2. 

The linearity of (5.1) with respect to u and v is not essential. A direct extension to the case of a system 
(5.1) non-linear in u and v is obtained, for example, by following the scheme of [6, 7]. 

The functional 7(4) (5.3) is an additive combination of the functionals T(1) (4.1) and 7(2) (4.2) but~ unlike 
70), T(2) and TO) (4..3), it is no longer positional. To construct optimum strategies in a game with index 
T(4) it is essential to use information not only on the actual position {t, x[t]} but also on the history of 
the motion [to[ • It]. The case of game (1.1)-(1.4) with index (5.3) will serve us as specific data for a 
convenient demonstration that, in general, when the programme extremum e( • ) (3.2), (3.3) is being 
computed, the construction of  the functions (p j ( .  ) involves convex closure with respect to the set of all 
arguments, comprising m and the additional parameters, and defining suitable domains Gj (in this case 
the "completed w~ctors" are the pairs (rn, v)). The domains Gj(a)(t.) arising here no longer possess 
homogeneity property (4.5). 

The procedure for computing e( .  ) (3.2), (3.3) in this case is as follows (the procedure was only briefly 
indicated in [7]). 

Suppose that the actually realized history of the motion of system (5.1) isx[t°[ • ]t.], t o ~< t. < 0 and 
that choice has been made of a partition 

Ak = Ak{x )} = {Xj:x] =t. ,x j+ I >'c), j  = 1 ... . .  k.'ck+ l = O} (5.4) 

of  the interval [t., O], including all the points of discontinuity of the matrix functionsA(t), B(t) and C(t) 
and all the points t[qiq I • [t., O], iq = 1,, . . ,  Nq, q = 1, 2 of (5.2). 

The functions A ~ ( -  ) are defined by 

"[j+l 

maxmin(m, X[O,~](B(~)u + C(~)o)dx A~ItJ(t*'m)= xi veQ ,eP 

m • R" i = 1 ..... k ~d 

(5.5) 

Let us construct the functions (pj(4)(t., m, v), (m, v) • Gj(4)(t.), rn • R n, v • R , j  = k + 1, k, . . . , 1. 
I f j  = k + 1, we define 

(4) (4) (5.6) Gt.÷l(t .)={(m,v):  m = 0 ,  0 ~  < v  -<~1}, V~+l't4)(t.,m,v)=0, (m ,v ) •G~+l ( t . )  

"  ̂(4)t÷ v) have already been Suppose that for 1 < j + 1 ~< k + 1 domains Gj(+4~(t.) and functions Vj+l~,*, m, 
constructed. Put 

hq(Z)=maxiq,  tff q] <~ "c, iq =1 ..... Nq (5.7) 

(if there is no iq suLch that tq[iq I <<- x, then hq(x) = 0, q = 1, 2). 
The partition A~t is chosen in such a way that for any j  = 1 , . . . ,  k only one of the following three 

possibilities can occur 
1. hl(xi+l) = hl(1;j) , h2('~j+l) = hz('~j) , that is, the time 1;j+ 1 is not a point of the partition ANq 

{tqt'  j} (5.2), q 1, 2; 
2. hl(Xj+l) = hl(Xj) + 1, h2(Xj+l) = h2(xj), that is, the time xj+l is a point tx [hl(xj+l)] of  the partition 

ANI{t "}; 
3. hl(xi+l) = hl('cj) + 1, h2(Xi+l) = h2(xj) + 1, that is, the time xj+ 1 is a point t2[h2(x~ +1)1 of AN2{tI~21}; 
We will first construct the domain Gj(4)(t.) and the auxiliary function (P(;)+l(t*, m, v), (m, v) • Gff)(t.). 
In case 1 we put 

G ( 4 ) .  _ ~ ( 4 )  ¢, j ( ' ,  ) -- "~j+l , ' ,  ), q)~4+)l'(t,,m,v)=(P~4~(t,,m,v), (m , v ) •G}4 ) ( t , )  (5.8) 



876 N. N. Krasovskii and N. Yu. Lukoyanov 

In case 2 we define 

G~4)(t,) = {(m,v): m = m.  + xr[t[h],O]D[hlrl, l ~ R p[*I, 

~(4) (5.9) ~[h]* (l)  ~ | ,  h = h I (Xj)  -t- 1, (m,, v) e "-'j+l (t.)} 

where p~iq]*( • ) are the norms adjoint to the norms ~io]( • ) of (5.3), iq = 1 , . . . ,  Nq, 1 = 1, 2. The function 
q~(~)+l( • ) is then constructed as follows: 

~(4)'(t, ,m,v) = maxcp~4+)l(t.,m.,v), (m,v) ~ G~4)(t.) (5.10) j+l 
m, 

The maximum in (5.10) is calculated over all vectors m. corresponding to the given pair (m, v) 
Gj(4)(t.) according to (5.9). 

In case we define 

G~4)(t.) = {(re, v): 0 <~ v <~ 1, m = m. + xr[t[2h],O]D[hlTl , 1 ~ R p[hl, 

bl.[hl*(/)<~V-V,, V, ~<V, h fh2 ( ' g j )+ l ,  (m,,v,)EG¢.4~(t,)} (5.11) 1 

q~4+)l(t.,m,v) = max ~0~4+)t ( t , ,m, ,v.) ,  (m,v) ~ GJ4)(t,) (5.12) 
nl,,V, Y 

The maximum in (5.12) is calculated over all pairs (m,, v,) corresponding to the given pair (m, v) 
Gj(4)(t,) according to (5.11). 

We now define 

V~4)(t , ,m,v)= AV /(t,,m)+¢p~4+Yl(t,,m,v), (m ,v )~  G~4)(t,) 

(5.13) 

The symbol {V(t,, • , -)} in (5.13) denotes the upper convex hull of the function V(t., m, v); it is 
constructed by convex closure with respect to the combined argument (m, v) in the domain G. 

Continuing the induction up to j  = 1, we obtain a domain Gl(4)(t.) and a function Ipl(4)(t., m, v), (m, 
V) ~ Gl(4)(t.). 

The domains Gj(4)(t.) will be convex compact subsets of/~+1, and the functions ~p;(4)(t., m, v) and 
~P~)+l(t., m, v) will be concave, bounded and at least upper semicontinuous [13, p. 51]~on Gj(4)(t.),j = 
1 , . . . , k .  

Put 

~ ' ) , ,  titjt ~iOx[t ti~] (5.14) a(x[t0[ -]t ,])= ~ ~'1 , " ,  ! ]) 
il=l 

• max {"[i2](D[i2lxrtP2h~a x(xtt.°[ ]t.])= . . . .  ~'2 2 ~ 2 ~,, 
12 =l,...,t12 (t , ) 

Define 

e(4)(x[t°[ ' ]t,l, ak) = a(xtt°[ • ]L])+ max [x(x[t°[:]t,])(1-v)+ 
(m,v)EGI(4)(t,) 

+(m, X[O,t.]x[t,])+<p~4)(t,,m,v)] (5.15) 

We will show that the quantity e(4)( • ) (5.15) has the important properties of u- and v-stability [6, 
pp. 208, 216; 7]. 

Theorem 5.1. (u-stability of e¢4)( • ).) Suppose the history of the motion of system (5.1) that has been 
realized isx[t°[ • ]t.], to. ~< t. <'O, and that a partition Ak[Xi] (5.4) of the time interval [t., O] has been 
chosen. Then, for any admissible realization v.[t.[ • ]t*) = {v.[x] e Q, t. ~< x < t*}, where t* = x2 
Ak[x/], an admissible realization u[t.[ • ]t*) = {u[x] e P, t. <~ "¢ < t*} exists, such that, under the action 
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of  these controls, the realized historyx[t°.[  • ]t*] is such that 

e(4)(xtt°[ .~]t" 1, a'k, ) - e(4)fx[t°[ . ]t. ],/~k) <- 0 

where  A~,.{z*j} is the part i t ion of  the interval [t*, O], x~ = 'l;j+ 1 E Ak, j = 1 , . . . ,  k*, k* = k - 1, x~,*+l 
= O, genera ted  by Ak. 

Proof. By const luct ions (5.5)-(5.13), the relationship be tween  the partit ions Ak{xj} and A~.{x*}, we 
obtain identities 

G~4)(t *) m G(4)(t,), ~0}4)(t*,trt, v) -- cp(a)(t,,m,v) (5.16) 

We now define an auxiliary functional on the possible realizations x[t °. [. ]t*], besides the quantity 
e(4)(x[t°.[ • l t * l , a l . ) (5 .15 )  

• 0 ' x " • =o(x[t°[ It.])+ e(4)(x[t ,[ '] t ,] , t ,  [t ] ,A ' , )  • max [x(x[ t°[ .] t , ] ) (1-v)+ 
(m,v)GO~4)(t.) 

+ ( m, .•[O,t']x[t']} + ~0(24)' (t., m, v)] (5.17) 

It can be  shown that 

e~4,(x[ t° t"  ] t . ] , t ' , x t t ' ] , a "  k • ) = e(4)(x t t ° [ "  ] t * ] ,a"  k. ) (5.18) 

whatever history x[t°[. ]t*] is realized. 

Indeed, three cases are possible. 
. , 0 , In the first case, we have hl(t ) -- hi(t.), h2(t ) = h2(t.). It then follows from (5.7) and (5.14) that ~(x[t. [. ]t ]) 

-- ~(x[t ° [. It.]), x(x[t ° [. ]t*]). Thus, comparing (5.15)-(5.17) and taking note of (5.8) (j = 1), we obtain the required 
equality (5.18). 

In the second case, we have hi(t*) = hi(t.)+1, h2(t*) = h2(t.). Now, by (5.7) and (5.14), we have 

,._-t[*l.   xtto[ 
x f x t t ° [  • It* ]) = x ( x t t ° [ .  It. ]), h = t,t f t ' )  

Then, by (5.15) and (5.16), a pair (m °, v) E G2(4)(t.) exists such that 

,c4)(, , [ t° t  • i t" ] .a; , . )  = o(xtt°.[, i t . ] )+ ~ h ] ( n [ h b , [ t . ] ) +  

+ ~(xt t° t "  l t , ] ) ( l - v ° ) + ( m  O, X[O,t ' ]x [ t ' ] )+c#(24)( t . ,m°,v°) ,  h=hl(t*) (5.19) 

We now define vo:tors m ° ~ R n and t o E R mill from the conditions 

(l 0, Dl[Mxtt'])= max (l, O[MxIt*])=B{M(D[Mxtt*]) 
B[k]*(I)~I 

m° = m0 + x r [  t*,O]D~ hlrlO (5.20) 

We have (m °, v °) ,- Gl(4)(t.) (see (5.9)). It follows from (5.10) ( j  = 1) and (5.20) that ~(4)(t., m °, v °) ~ q~4)(t,, 
0 o m ,  v ). ConsequenflLy, by (5.17), taking (5.19) and (5.20) into consideration, we have 

e~,)(x[tO[. ] t . ] . t ' , x [ t ' ] ,A ' k . )~x (x [ tO [ .  ] t . ] ) ( ] - vO)+g lM fD [Mx [ t * ] ) +  

+cr (x t t  O [ .  ] t .  ]) + (ra 0 , XtO, t* ]xtt* ]) + (p(4)(t. ,m 0 , v 0 ) = e(4)(xtt°[ • It* ] A" , ,, , . )  ( 5 . 2 1 )  

On the other hand, in the present case, it follows from the construction of the domain Gl(4)(/,) (5.9) and the 
function ~(4)(t., m, v) (5.10) that, for every pair (m, v) e Gl(4)(t.), vectors m.(m, ~/) e R ~ and l(m, v) e R p[h]l, h 
= h~(t*) exist such that 

(m.(m,v),v)eG(i4)(t,), I.t[M*(l(m,v))~l, m.(m,v)+ xT[t*,O]D[Mrl(m,v)ffim 

¢#(4Y ( t.,m, V) = ¢~(4) ( t.,m. (m, V ), V) 
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Then, by (5.17), a pair (too, Vo) • Gl(4)(t  *) exists, for which 

e ~ 4 ) ( x [ t ° [  • It, I, t* , x [ t  * ], ,x'k. ) = a (  x[t.° [ • ] t . ] ) + x ( x t t ° [ . ] t . ] ) ( 1  - V o ) +  

+ (m 0, X[O,t* ]x[t* ]) + Ip(24)' (t . ,m 0,v 0) (5.22) 

For the vectors m,o = m.(mo, Vo) and lo(mo, Vo) corresponding to this pair (too, Vo), the following relations hold 

(re,o, v 0 ) e G9 {4) ( t , ) ,  }21 hI* (1 o)  ~< 1, m,o'+ X T it* ,O]D}h]TIo = ,no (5.23)  

(p~4)' ( t .  ,m0,V0 ) (4) =tp 2 (t. ,m.o,V0) 

In view of (5.16), (5.22) and (5.23), it now follows from (5.15) that 

e(4)(x[t°[.lt*l,/~*k. ) >t a ( x [ t ° [  • ]t .]) + ×(x[ t ° [  • ]t, 1)(1-  Vo)+  (lo,D[nlx[t*])+ 

+ (m.o,X[O,t* ]x[t* ] ) +  (p(4)' ( t . , m 0 , v 0 )  = e(4l(x[tO[ • lt.],t*,xit* ],t¢ k. ) (5.24) 

Inequalities (5.21) and (5.24) prove equality (5.18) in the second case. 
In the third case we have hi(t*) = hi(t.), he(t*) = hz(t.) + 1. In that case the time t* is a ooint t~ [hl of the vartition 

AN2 {t2[i21}, h = h2(t*). Aecorclmg to (5.i5), m view of (5.14) and (5.16), we see that a p'air (m 0, v °) E "Gz(4)(t.) 
exists such that 

e(4 ) (x[ t0  [ • ]t* ], Ak, ) = ~3(x[/0 t - i t ,  ]) + ( m0 , XtO,t* l i t / *  1) + 

+ q~a)(t, ,m,° ,v,  o ) +max{×(x[tO[.]t.]),~ttf](Dt2h]x[t.l)}(l_vO ) (5.25) 

Define a pair (m °, v °) • Gl(4)(t.) and vector t o • R plh]2 by the conditions 

, ~ x [ t ° [  • } t .  ] ) ( l  - v °) + ~tt2 nl (D[h]x[t * ])(v ° - v ° ) = 

= max [×(x[ t ° [  • ]t ,])(l - v ) +  l l[ f l(D[2h]x[t*l)(v-v°)] = 
v 0 ~v~ l  

= maxl×(x[t° [ • It, 1), litf ] (D[2hix[t * 1)1(1 - v ° ) (5.26) 

(lO,D~hlx[t*])= max (l,D[hlx[t*l)=tlihl(Dt2nlx[t*l)(vO - V  0) 
~i, hl.(/)~v°-v o 

m 0 = m 0 + x T [ t  * ,O]D~hlTI 0 

It then follows from (5.17), in view of (5.12), (5.25) and (5.26), that 

e~4,(xt,°[ ),. ],t ',xt," ],•;. >~ ~<xtt2[ it. ])<l- v°)+ ot2h)[ Ot']xtt* ))<v ° - v°)+ 

0 0 • • (4) 0 0 0 • * +O(x [ t ,  [- ]t ,  ]) + ( m , ,  X[O, t  ]x[t 1) + ¢P2 ( t . , m . , v , )  = e(4 ) (x(t,  [.  ]t ]) ,Ak,  ) (5.27) 

In addition, in the third case, by (5.17), a pair (m °, v °) E Gl(a)(t.) exists such that 

, o ] , / t .k . )=c(x[tO[. l t . ])+x(x[tO[.] t .])( l_vo)+ e~il(x[t, [. ]t. l,t*,x[t* 

+(mo , X[O, t* ]x[t* ]) + tp(24)' (t,, m 0, V 0 ) (5.28) 

And then, by the construction of the domain Gl(4)(t.) (5.11) and the function tp2(a)(t., m, v) (5.12), a pair (m.0, 
v,0) • G2(4)(t.) and a vector 10 • R p[hl2, h = h2(t*) satisfying the conditions 

0 ~< V.o ~< v o, la [h]* (l o) ~< v 0 - v.o, m.o + Xr[ t  *,OlDthlrlo = m 0 

¢p~4)" (t., m 0, v 0 ) = (p(4) (t. ,m,0, V.0 ) (5.29) 

exist. Here the pair (m0, v0) of (5.28) and the sequence {(m.0, v.0), 10} of (5.29) are defined in the same order in 
which previously, in the second case, we defined the pair (m0, v0) of (5.22) and the vectors re.o, l0 of (5.23). The 
only difference is that, instead of the vector m.(m, v), which was defined in the second case by solving the problem 
of the maximum of (5.10) as a function of the pair (m, v), solution of the problem of the maximum of (5.12) now 
yields a pair (m., v.) as a function of the pair (m, v). 
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We now deduce fl'om (5.15), in accordance with (5.16), (5.28) and (5.29), that 

e(4)(x[t°[. ]/* * >_ ],A k. )~  O(x[t°[ • ]t,])+×(x[t°[ • ]t .])(l-vo)+(lo,D[h]x[t*])+ 

+(m.0, X[O,t* ]x[t* ]) +tpt24)' (t. ,m 0 ,v 0 ) = e(4)(x[tO[.]t. ],/* ,x[t* ],A]. ) 

The proof of this inequality relies on the chain of inequalities 

max{×(x[t° [ - ]t. ]), la[2 hI (o~h]x[t * ])}(1 - v,0 ) ~> 

>! ×(x[tO[ . ]t. ])(l - v 0 ) + ta[2hl(D~hlx[t * ])(V 0 - V,O ) 

~> ~(x[t0[. ]t.])(l-Vo)+(lo,D[2hlx[t*]) 

(5.30) 

Inequalities (5.27) and (5.30) prove equality (5.18) in the last, third case. 

We now consider  W = W(t*; t., x[t.], v.[t.[ • ]t*)) c Rn- - the  domain of  attainability by the t ime 
t* for motions  of  system (5.1) generated from the posit ion {t., x[t.]} by any admissible control 
u[t,[ • ]t*) paired with v.[t.[ • ]t*). This set is a non-empty,  convex, compact  subset  o f / ~ .  Since the 
functions tp'ff)(t., m, v)  are concave jointly in (rn, v), it follows, reasoning according to the scheme of  
[2, p. 120; 6, p. 320[, which makes  use of  the Kakutani  fixed-point theorem [14, p. 638], that we can 
verify the existence of  a pair {(m °, v°) ,x °} e E = [Gl(4)(t,) x W] satisfying the following two conditions 
simultaneously 

×(x[t ff [" It. ]) (1 - V O) + (m O, X[O, t* Ix O) + ~o~ 4)' (t,, m O, v 0 ) = 

= max [Idem(m ° -4 m, v ° --~ v)] (5.31) (m,v)e~14)(t.) 

(m °, XIO, t* ]x °)  = min(m °, X[O, t* ]x) (5.32) 
x ~ W  

The abbreviat ion " Idem"  on the right of  the equali ty denotes  the expression obta ined from the 
expression on the left of  the equali ty by making the substi tution shown in brackets.  

Let  u°[t,[ • ]t*) be  an admissible control which, paired with v.[t ,[ .  ]t*), takes the mot ion of  the system 
0 0 0 . to a point  x e W. "When that is done the realized history of the mot ion  is x [t. [ • It ]. 

Then,  using the Cauchy formula and the legitimacy of  performing the minimization operat ion under  
the integral sign, we deduce  from (5.32) that 

t* t* 
I ( m° ,  X[ag,x]B(x)u°[x]) d'~ = I min( m°, X[O,x]B(x)u)dx  (5.33) 
t. t, ueP 

and by (5.17), noting (5.31), we obtain 

e(4)(x, o It.° [. ]t.],t * , x ° , A * k . ) = × ( x [ t ° [ . ] t . ] ) ( l  - v ° ) + ( m ° , X [ O , t . ] x [ t , ] ) +  

t* 

+ a ( x l t ° [ .  lt, l )+ f (m° ,X[ t~ ,x l (B(x)u°[x]+C(x)v . [x] ) )dx+q~t2a) ' ( t . ,m° ,v° )  (5.34) 
,. 

On the other  hand, since (m °, v °) e Gl(4)(t.), it follows from (5.15), as the upper  convex hull 
91(4)( • ) is a majorant  for  the function ~g1(4)( - ) (5.13), that 

e(4)(x[t°[ • ]t.], At,) ~ a(x[ t°[  • ]t. ]) + x(x[t.° [ • ]t.]) (1 - v ° ) +  

+(m °, X[O, t. ]x[t. ]) + A~I (t., m °) + ~t24)' (t., m °, v ° ) (5.35) 

The truth of  Theo rem 5.1 now follows f rom (5.33)-(5.35), taking (5.5) (j = 1) and (5.18) into 
consideration. 

0 0 <  Theorem 5.2 (v-stability of  e(4)( • )). Suppose  that  the history x[t .  [ • ]t.], t .  ~ t. < O of  a motion of  
system (5.1) has been  realized and that a partit ion Ak{xj} (5.4) of  the interval [t., O] has been  prescribed. 
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Then, for any admissible realization u,[ t ,[  • It*, where t* = x2 e Ak{xj}, an admissible realization 
v[t ,[ .  It*), exists such that 

e(4 ) (x[t°[. ]t ° 1, A'k. ) - e(4)(x[t°[ • ]t° 1, A~ ) >~ 0 (5.36) 

Proof. By (5.13), (5.15) and by Carath6odory's theorem [13, p. 155], given the upper convex hill 
~o(. ), under the present conditions a pair (m0, v0)~ Gl(4)(t,) exists such that 

e(4)(x[t°[ • ]t, ], A k ) = (~(x[t ° [.. ]to 1) + ×(x[t ° [- ]t, ]) (1 - v o) + 

+(mo, X[O, t. Ix[t. ]) + A~I (t., m o) + ~o(24)' (t., m o, Vo ) (5.37) 

Now, as in the proof of Theorem 5.1, we consider the auxiliary quantity e~4)(x[t°[ • ]t.], t*, x[t*], A~,.) 
(5.17). 

Relying on measurable selection theorem [15], let us take an admissible realization v0[to[ • ]t*) that 
satisfies the condition 

t* t* 

(m 0, X[O, x]C(x) o 0[x])dx = ~ max(m 0, X[0, x]C(x) u )dx (5.38) 
t ,  t ,  I / E Q  

Le t  x[t°[ • ]t*] be the history of the motion of system (5.1) realized under the action of the controls 
u.[t .[ .  ]t*) and volt.[ • ]t*). It then follows from (5.17), by using the Cauehy formula, that 

p 0 * * * e(4)(x[t . [. ]t. ], t , x[t ], A'k. ) ~ ×(x[t0[ • ]t, ]) (1 - V 0 ) + (m 0, X[O, t, ]x[t. ]) + 

t* 

+o(x[t°[ - It.])+ I (mo,X[O, 'c]B(x)u.[ 'c]+C(X)Uo[X]))dx+q~4) ' ( t . ,mo,Vo)  (5.39) 
t ,  

It now follows from (5.37) and (5.39), in accordance with (5.5) (j = 1) and (5.38) and in view of (5.18) 
(which is proved in exactly the same way as in the proof of Theorem 5.1), that inequality (5.36) is true. 
This completes the proof of  Theorem 5.2. 

If we note that, by (5.6) 

e(4)(x[tO,[ • ]O] ,Ak)  --. V(4)(x[t,°[ • ]0 ] )  

we obtain the following proposition as a corollary of Theorems 5.1 and 5.2. 

Theorem 5.3. For any historyx[t°[ • I t.], t o <~ t. < O of the motion of system (5.1) and any sequence 
of partitions Ak{xj} (5.4) of the mesh 6k = maxj(xj+l - xj) (k = 1, 2 , . . . )  such that lira 8k = 0, k ---> 0-, 
the following equality holds 

lim e(4 ) (x[ t  0 [.  ]t, ], A k ) = P~4) (x[ tO [" It,  ]) 
k---~** 

where 0 0 p(4)(x[t.[ • ]t.]) is the value of game (5.1)-(5.3). 
We have thus established that the procedure described above for calculating e~4~( • ) on the basis of 

(4) O (4)" " the functions cpj ( . ) ,  which are btained by convex closure of the functions ~ ( . )  in domains Gs (4) 
with respect to the pair of arguments (m, v), produces the value p0(4)( • ) of game (5.1)--(5.3). 

The example in the next section will show that the convex closure must be carried out with respect 
to the pair (m, v). In that example, convex closure with respect to m alone for each fixed v will not 
yield the value of  the game. 

6. E X A M P L E  

Consider the following problem of type (5.1)-(5.3). 
Let the system be described by the equation 

dxl  dt= f ( t )u+g( t )u  , t ° - -0~t~<O=3 

x = ( x l , x 2 ) ~ R  2, u = ( u l , u 2 ) ~ R  2, u =(Ul,U2)ER 2 

(6.1) 
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where u and v obey constraints 

andf(t) and g(t) are scalar functions 

.? + . , ' - l ,  -<l (6.2) 

2, O ~ t < l  {1, O~<t<l 
f ( t ) =  , g( t )= 

1, l~<t~3  2, l~<t~<3 
(6.3) 

The performance index is given as a functional 

~, -- ~/(x[0[ • ]3]) = max{Ix 2 [0]1, Ix2 [2111 + Ixl [311 (6.4) 

where I • denotes ~Le modulus of the scalar quantity, Na = 1, ta [1] = ~ = 3, D10) = [1 0], N2 = 2, tz O] = t o = O, 
t2 [2] = 2; D2 BI = D2 I~l = [0 1]. 

Let  9j(t., m,  v) be upper convex hulls with respect to (m, v) constructed for problem (6.1)-(6.4) in accordance 
with the procedure (5.4)-(5.13); let e(., Ak) denote the quantity (5.15) obtained in this case, and let p ( .  ) be the 
value of game (6.1)-(6.4). 

Let tp~(t., m, v) de:aote the functions obtained, using (6.1)-(6.4), by a procedure similar to (5.4)-(5.13) but taking 
upper convex hulls with respect to m only, for each fixed v e [0, 1]; let e*(., Ak) denote the quantity calculated like 
(5.15) from the functions 9j(t., m, v), and let p*(.  ) be the limit of e*(., Ak) (k ~ ~0) as the mesh of the partition 
Ak tends to zero. 

Let t* = t o = 0. lh:escribe a partition Ak {x i} of the time interval [0, 3] which includes the times 0, 1, 2, 3. 
Carrying out the calculations, we obtain 

Gl(O)={(m=(ml ,m2) , v ) :  0~<v~<l, Imll~<l, Im21~<v} (6.5) 

91(0,re,v) =-~-mml 2 +m22 + ( l + ( ~ - - 1 ) v ) + l  

q ) r (0 ,m,v) - - -~ml  2 +m~ + l+~ '~v  2 +1, (m,v)~Gl(0)  

It can be seen that the domain GI(0) does not have the homogeneity property (4.5), and the function (p*(0, m, 
v) is neither concave nor homogeneous with respect to the pair (m, v). 

Note that in this problem the limits p ( .  ) and p*(- ) can be calculated fairly easily by an analytical procedure 
in terms of the quantities e(., Ak) and e*(., Ak). This may be seen from (6.5). 

Let Xx[t. °] ffi 2,xz[tq,~ = 2 be a given initial state. 
Then, using (6.5), we compute 

p(x[0[ • ]0] = (2,2)) = 6 -  2 ~ ' ~ - 1 )  ~, 5,089 > p* (x[0[- ]0]) = 5 (6.6) 

The strict inequality (6.6) shows that p*(.  ) is not the value of game (6.1)-(6.4). 
The control process generated by the constructions described above was modelled on a computer for problem 

(6.1)-(6.4), The resullts of the numerical experiment corroborate our theoretical conclusions. For example, accurate 
0 0 simulation of the control process for optimum strategies u ( • ) and v~! - ) that are extremum strategies for p(-  ) 

gave T = 5.089 = p0"[0[ • ]0]). In the ease of the optimum strategy u ( • ) and the extremum strategy v*( - ) for 
p*( .  ), the result was "t = 5.28 > p(x[0[ • ]0]). 
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