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For a dynamical systcm subject to uncontrollable interference the problem [1-8] of the control that will guarantee an
optimum performance index is considered, where the latter is given as a functional of the realized motion. The investigation
concerns the case in which information about the history of the motion must be used. A functional-theoretic treatment is
presented, reducing the initial problem to the construction of the upper convex hulls of certain auxiliary functions [7, 9-12] in
multidimensional spaces. On the other hand, a method for reducing the problem to constructions in a space of much lower
dimension is developed. The method is demonstrated on problems with typical performance indices. © 1997 Elsevier Science
Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM
Suppose a system is described by the equation

dxldt = A(t)x+ f(tup), 0sti<t<9 11

xe R ue R',ve R*

where x is the phase vector, u is the control vector, v is the interference vector, 1%, 8 are given instants
of time, n, r and s are given natural numbers, A(¢) and f{¢, u, v) are matrix-valued and vector-valued
functions, respectively, piecewise continuous in ¢, where f{t, u, v) is jointly continuous in all its arguments
in its intervals of continuity with respect to ¢ (the discontinuity points with respect to ¢ of (¢, u, v) are
independent of 4 and v), both functions are continuous from the right at their discontinuity points, and
u and v obey the constraints

ue P,ve Q (1.2)

where P and Q are given compact sets; the saddle-point condition in a small game is satisfied [1; 6,
p. 79], that is, for anym € R” and t € [t3, 9]

min Ln:\g(m, fltup)y= Lneaéc r;*;np(m,f(t.u,v )) 1.3)

where the symbol ( - , - } denotes the scalar product.

The admissible realizations are Borel-measurable functions u[[- |8) = {u[t] € P, t? <t < 9} and
vt - 19) = {uft] € Q, t° <t < §}. These realizations, by (1.1), generate absolutely continuous
motions x[tY[- | 9] = {x[t], t° < t < 9} (the initial state x[t°] is given).

We define the performance index y of the motion x[tY - 19] as the functional y(x[t - ]9]) with the
following structure. Choose a natural number N, times M e [t?, ], A+ > tm, i=1...,N-1,
M = 9, constant matrices DY of dimensions p[i] xn 1= p['] =n,i =1,...,N. The sequence
(DAY, . . ., DA forms a p-vector, p = p!Yl + . .. + pi™. Choose some norm p( - ) in the space
F? of all such sequences. Now define

Y = Y(x[0[10]) = p({DMx{rV],..., DN x Ny} (1.4)

This performance index may be specified in advance or the functional is defined as an approximation
for the initial index y.(x[t%[ - J9]), which takes a continuum of values of x[¢] into account.
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The problem is to find a control (or interference) designed to minimize the index y (1.4) (which itself
is designed to maximize).

These problems are combined, according to [7], into a two-person antagonistic dlfferentlal game (u
is the first player’s move and v that of the second player). For any initial history x[¢%[ - Jr.] (t° <
t, < 19) this game has a value Pty - 1)) The game has a saddle point consisting of optimum strategies
Pty - 11, €),v Ot - Jl, €}, where x[tY[ - ]t] = {x[1], t? < 1 <t s the history of the motion realized
by the actual time ¢; € > 0 is some parameter of accuracy [6, 7]. The motions are generated in a discrete-
time scheme {6, 7]. The optimum strategies u~ and v" are constructed as extremum strategies [7, p. 150]
for the functional p°( - ).

Thus, in order to construct an optimum control and a counter-optimum mterference we need an
effective way to calculate the value of the game, using each successive history x[tY[ - Jt] as the initial
history.

In many cases, in order to construct optimum controls it is sufficient to consider only some part of
the history up to the actual time . For example, if the functional y (1.4) is positional [7, 8], it is sufficient
to rely on the current position [z, x(f)] only.

In the differential game under consideration, with condition (1.3) satisfied, the saddle point is reached
with pure strategies. If condition (1.3) is not satisfied, a solution must be sought in the class of mixed
strategies [7, 9]. But even then the auxiliary constructions that make up the main part of this paper
need no significant alteration.

2. FUNCTIONAL-THEORETIC TREATMENT

Suppose that by the time ¢ € [t?, 9] the history actually realized is x[to[ ]Jf]. We will use the term
functional position corresponding to that history for the sequence {, z[t]}, where

(1) = (x[£), X[¢]), x(e]={&M[e),...., M)} (2.1)
DX, 11x{e), ¢ <o)

Here X[, #] is a fundamental matrix of solutions for the equation dx/dt = A(t)x.

The index y (1.4) may now be written in the form y = u(x[8]).

The evolution of the functional position {t, z[f]} = {t, (x[t], X[¢])} is described by Egs (1.1)
and

ds[/dt =¥(t, u, v), L < 1< ® (22)
where
fuw) = (¢ )., FYup ) (23)
. DX 1 f ¢ up), t<it)
f(:](t’u’u)={ (.0 f (), 1<
0, <y

The saddle-pomt condltlon in a small game for f(t, u, v) is satisfied due to (1. 3). The initial
state 2[t] = (([t?], X[¢?]) for system (1.1), (2:2) is uniquely defined by the initial state x[t?] of system
1.1).

Let us define a performance index ¥ for the motion Z[t%[ - 18] = {Z[t], ? < t < ©} of system (1.1),
(22)

¥ = ¥(2[8)) = pR[o)) (24)

where p( - ) is the norm of (1.4). The value of the index ¥ (2. 4) is the same as that of y (1.4).

Let us consider the differential game (1.1), (2.2)-(2.4) in the space of functional positions
{t,2 [t]} but now w1th the terminal payoff y (2.4). This game has the value p°(t., z[t.]) and a saddle
point {&°(t, z[t], ), v °(¢, Z[t], £)}, where th*] denotes the initial state of system (1.1), (2.2) and z[f] its
actual state. The optimum strategles u (t, z[f]), €) are constructed as extremum strategies [6,
pp. 210, 220] for the value function §°(z, z[z]).
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It follows from (1.1%—(1.4) and (2.1)~(2.4) that the value p°(, z[¢]) of game (1.1), (2.2)~(2.4) is
the same as the value p’ ([t - ]#]) of game (1.1)~(1.4), and strategies that are optimum for game (1.1),
(2.2)2.4), given condition (2.1), will determine actions u and v in the same way as optimum strategies
for game (1.1)—(1.4). This means that games (1.1)—(1.4) and (1.1), (2.2)(2.4) are essentially equivalent.
Therefore, the terminal constructions of [6, 9-12] are transformed in a natural manner into constructions
for the initial game (1.1)}-(1.4). It must merely be taken into consideration that, unlike a standard
differential system, in the case of (1.1), (2.2), (2.3) the possible state z [f] are not vectors with arbitrary
components x{f], x4[¢],i = 1, ..., N but only vectors whose components satisfy conditions (2.1).

3. CALCULATING THE VALUE OF THE GAME

Suppose that the realized history of motion of system (1.1) is At - 1), 12 < t. < 9; according to
(2.1), this history uniquely defines the functional position {z,, z [t,]} = {t,, ([t.], X[t.])}.

Following the method of stochastic programme synthesis [6, p. 380], we introduce the programme
extremum. To that end we prescribe a partition

Ak=Ak{1j}={T1.Tl=t*’ Tj+1>1j’ TJ+1—1]$8k, j=1,...,k, Tk+|=ﬁ} (3.1)

of the time interval [f+, 9] in which we include all the times # € [t., 8],i = 1,..., N, of (1.4) and all
the points of discontinuity of the functions A(f) and f{¢, u, v). Associated with the partition A; (3.1) are
jointly independent random variables (r.v.) {&;, . . . , &} uniformly distributed in the interval 0 < §; <
1,j =1,...,k The ordered set {&,, . . ., &} will be treated as an elementary event @ in a probability
space {Q, B., P}, where Q = {} is the unit cube in k-space, B. is a Borel ¢-algebra for the cube, and
P = P(B) is a Lebesgue measure on the cube, B € B..

Suppose

Kw)= (" (@)eR™, i=1,...N}, 0eQ

is a p-dimensional vector random variable defined on {Q, B., P}. The programme extremum e( - ) is
defined by

e(x[t[ 1, ) A ) = €, 201, 1, Ay) =

el = vr:i;gaxu *((w)), 1, = M{lw))

1*(1,,0) = 1% (1.1, 8) = MUE ... EIE.. Ej) j=1..k

Here the symbol p*( - ) denotes the norm adjoint to the norm p( - ) of (1.4). The symbol M{ - } denotes
the mathematical expectation, and M{ -|- } denotes the conditional mathematical expectation.
It follows from [6, p. 401] and the equivalence of games (1.1)-(1.4) and (1.1), (2.2)~(2.4) that

l. o It ’ = i é 9‘ y =
k_ml,gz-»oe(x[t*[ ] *] Ak) k-)u]:,lg:-)oe(t* Z[‘*] Ak)

=0, 401, )) = p°(x[1202e, D)

By [10], the programme extremum e( - ) (3.2) may be computed recursively by constructing u {)er
convex hulls ¢;(1) for suitable functions wj(l), but now with a deterministic argument 1 = {M e
R i =1,..., N). These hulls must be constructed for each in the domain L = {L: p*(I) < 1} of the
space R?, p = p"1 + . .. + p®\. Thus, we obtain :
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eI, ) ) = 81, 211, 1, A = max{(1. &11,1)+ @, 0)

We are interested in situations in which the number N, and hence also p, are large. Therefore, if it
is not possible in some specific situation to find an effective way of constructing the above hulls, the
computatlons become intractable even for relatlvely low dimensions n of the phase vector x.

It is essential that the computation of e( - ) (3.2) in terms of upper convex hulls ¢;(I) in domains L

of high dimensions may be contracted under fairly general conditions to similar constructions in spaces
of much lower dimensions. This is because equality (3.2) may be transformed into

e(x[120 1,1 Ay) = . ["2 (1[:1 Dhlx[yl:]])
k tj+l

+<m*,X[t3,t*]x[t*]>+M{Z Ij'm xmm(m(t,,m),X[ﬁ 111 (%, uu)) H 3.3)
=] 7 veQ ue

where
h(t)=maxi, <y, i=1,...,.N

(if there isno i (i = 1, ..., N) such that 1 < ¢, then h(r) = 0)

. , N R i .
l,[kl] = M”[l]((l))}, i= 1,...,h(t*), m, = M{ ZXT[t[']"G]D[l]T[('](w)} (3.4)
i=h(te }+1

m(‘t,-,w):M{ g xT[im,ﬁ]D(i]T[[i]((D)|§|p-n&j}v j=],“_,k

i=h(t; )+l

(the superscript T denotes transposition; Eqs (2.1) and (2.3) are taken into consideration in S3 3)) This

enables us to work not with functions y;(I) and ¢(1) of the multidimensional vector | = S L)
but with suitable functions of the vector
N . N
m= Y X[/ 91D meR"
i=h(t;)}+1
and of the vectors M, i = 1, » h(7;) which involve only some of the components of 1. Moreover, in

many typical cases it is sufficient to work only with functions of the vector m. True, certain additional
parameters are then necessary. This general statement, formulated here in brief, will be explained later
in relation to specified material.

4. POSITIONAL FUNCTIONALS
Let us consider differential games (1.1)-(1.4) with the following performance indices (1.4)

Yo = Ry (DY, DNVI(AM )y o § 00 plilyy iy @.1)
i=1
Yy = oy (D), DM = max (u(DVx(st ) (42)
N\
Yoo = R {DMxleM),..., DIV Ix(AN) =(2(u"‘(0“x[r!"1»2) (43)
i=1
where pl( - ) are certain norms in R, i =1,..., N.

The functionals Y1), Y(2), ¥3) are posmonal [7 8], so that a sufficient information image [7, pp. 20, 134]
for optimum strategies in games (1.1)}-(1.4) for (4.1), (4.2) and (4.3) will be the actual position {z, x(t)}
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Reduced procedures for constructing the functions y;( - ) and their convex hulls @;( - ) in suitable
domains G; for cases with functionals y(; and 7, are described in detail and rigorously justified in [7].
Here we will exhibit a construction for the functional 73, following a general scheme of contraction.
This contraction, on the one hand, allows for the differences between Y3y and Y1), ¥(2); on the other
hand, it retains the general features of the corresponding constructions.

Aoc;)rdin'gly, we consider game (1.1)~(1.4) with the index 73y (4.3). The norm u(’g)( -} adjoint to
He)( @) is

N bl } ;
u?‘;,(l)=(2(u["‘(1‘”))zj L=y e R iz, N
=1

where pl1*(.),i = 1,..., N are the norms adjoint to p¥l( . ). Therefore, when the supremum (3.3) is
constructed, the random variables m(t;, ®) must obey constraints that depend on the scalars

h(t;)
VAT, 0)=1- 3 (il o))’
i=1

It turns out that here, as in (7] for v,y and yz), we can now change from random variables
N w), m(7;, ®) and v(T;, ®) to deterministic variables 14, m and v. Put

Tisl

Ay ;(t,,m)= [maxmin{m, X[9,T]f(T,uv))dt, meR", j=1,..,k
'rj"EQ ueP

We will now construct a sequence of domains Gj(3)(t.) in the space R**! of pairs (m, v) and a sequence
of functions (pj(3)(t», m,v),{(m,v) € G1(3) (t),j =k + 1,k, ..., 1. The construction will be recursive
with respect to the meshes of the partition A; {7} (3.1).

Forj = k + 1, define

G!ii)l(t*) ={(mVv)0<sv<lm= 0}, (pii)] (t*,m,v) =0, (m,v)e Glﬁ)l (t*)

We proceed by induction. Suppose that for j + 1 we have already constructed the domain G(}’fll(t.)
and the function (p(?)ﬂ(t., m, v), (m, v) € G(ifll(t.). We first construct the domain Gj(3)(t.) and
an auxiliary function (p(:j);l(t., m, v), (m, v) € G(?)(t-). On changing from 1, to 7; there are two
possibilities. In the first, we have i(%;) = h(7;41), i.c. 7,41 is not the same as any of the times {1, We then
define

G =G @,), o t,.mv) =P (t,.mv)
The second possibility is £(7;) = A(T;41) - 1, that is, 7;,, = M p = h(v) + 1, in which case we define
GO(t,)={(mv):0<v<1, m=m, + X (", 91D, | P,

@@ < v -viv, <v,(m,.v,) e G (2,)) , (4.4)

3y 3
o', mv)= max %) (¢, m,,v,), (m,V) € G2 (1,)

where the maximum defining the auxiliary function (p(j34)r1( - ) is taken over all possible pairs (m+, v+)
corresponding, according to (4.4), to the given pair (m, v) € G; 3)(t,).
We now define
v mv) = Ay (8, m)+ @ (2, m,v), (m,v) eGP (2,)
0Pty m ) = (WP (t,, Ve, G=60t,), 0<v=1
where G(3),-,v(t') is the section of the domain G(3)j(t.) by a hyperplane v = const.

Here the symbol {y(#-, -, v)}* denotes the upper convex hull of the function y(t., m, v) which is
constructed by taking convex hulls with respect to m in the domain G, with all other arguments fixed.
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By definition, the upper convex hull is the minimum function concave in m that majorizes the function
y(ts,m,v),me G.

Continuing the induction up toj = 1, we construct a domain G1(3)(t:) and function ¢1(3)(t., m,v), (m,
V) e G1(3)(t.). Then the quantity

0 gy VA
e (x[tol11,),A,)= ma ((l—v D) (u‘”(Dl”x[z“]»z] +
i=1

(m.v)eGP (1,

+{m, X[9,1,)xlz, )+ ¢,.m,v)

will have the properties of u- and v-stability [6, 7]. We will not prove this here—the proof is similar to
that given in [7] for games with indices ;) and 7). In addition, an outline of the proof of these properties
will be given below, in Section 5, for a more difficult case.

As in 7], we conclude from these properties that e;)( - ) approximates the value po(3)(x[t(,’[ -Jt.]) of game
(1.1)~(1.3), (4.3). Thus, the problem reduces to constructing the convex hulls (p}3)(t., -, v) of the functions
0] 1(3)(t., -, V) in the domains G(f},(t.), 0 =< v =< 1, where the latter are of the same dimensions as that of
the phase vector x of system (1.1), which is independent of the number N of points :¥l. We emphasize
that here, as in many other cases, including games with indices ;) and y(z), upper convex hulls are
constructed only for functions of the variable m, for fixed values of v € [0, 1]. This is because the domains
Gj(g’)(t.), j=k+1,...,1,are homogeneous in (m, v), that is, if

(m,v) € G r,)then (m, v} e G, n=0,Mv <1 (4.5)

Hence we conclude that the functions ¢ ]-(3)(&, m,v),j =k +1,...,1willbe homogeneous of degree
one in the variables (m, v). Therefore, the construction of upper convex hulls of the functions
\|1j(3)(tt, m, v) in the domains Gj(”(t') with respect to the pair (i, v) leads to the very same functions
(p?) (t+,m, v) that were constructed above by convex closure with respect to m only, in sections of G(j-?,(t.)
obtained by fixing v € [0, 1].

We have thus presented a construction of the function ¢{2)( - ) which, by the foregoing, defines the
value of the game (1.1)-(1.4) and optimum strategies for the typical index (4.3).

In what follows, working with specific data, we will show that, generally speaking, the construction
of the functions @;( - ) requires the application of convex closure with respect to all arguments of a
space obtained by completing the space R" of vectors m by adding auxiliary parameters (such as v).
This important fact is crucial for the present paper.

5. NON-POSITIONAL FUNCTIONAL

Let us consider the system described by the equation
dxl/dt = A(t)x + B(u+ C(t)v, 0<1i<t<9 (5.1)
xeR", uePcR,veQckR
where A(t), B(t) and C(f) are piecewise continuous matrix functions; as before, P and Q are

compact sets, and t?, ¥ are fixed
Two partitions of the time interval [¢?, 9] are given

ligdy _ o lig), () 0 g+l Ll .
ANq{tq" y=11,* =, tq" >tq", ip=1..,N, -1} (5.2)
qg=1,2
(41 [R)] . _ -
tl ¢t2 , ll _1""’Nl’ lz—l,...,Nz

max{/l M1, M) =
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The performance index of the motion of system (5.1) is

L/ . . . . .
Yooy = Yeay (xL20 18] = iu‘l"l(D}"]x[t,‘“])+_ max (52 (DL x (21 1y) (5.3)
I2= 1o iV

i=1

where D U are known constant pq["’] X n matrices, 1 < pq[’q] < n; qu (- ) are certain norms, i, =
1,...,N,andg =1, 2.

The lin%arity of (5.1) with respect to u and v is not essential. A direct extension to the case of a system
(5-1) non-linear in u and v is obtained, for example, by following the scheme of 6, 7). ,

The functional 4 (5.3) is an additive combination of the functionals Yay (4-1) and y() (4.2) but, unlike
Yy Y2) and Y3 (4.3), it is no longer positional. To construct optimum strategies in a game with index
Y4) it is essential to use information not only on the actual position {¢, x[r]} but also on the history of
the motion [t?[ - Jf]. The case of game (1.1)~(1.4) with index (5.3) will serve us as specific data for a
convenient demonstration that, in general, when the programme extremum e( - ) (3.2), (3.3) is being
computed, the construction of the functions ¢;( - ) involves convex closure with respect to the set of all
arguments, comprising m and the additional parameters, and defining suitable domains G; (in this case
the “completed vectors” are the pairs (m, v)). The domains Gj(4)(t,) arising here no longer possess
homogeneity property (4.5).

The procedure for computing e( - ) (3.2), (3.3) in this case is as follows (the procedure was only briefly
indicated in [7]).

Suppose that the actually realized history of the motion of system (5.1) isx[tY] - }t.], ¢ < #. < 9 and
that choice has been made of a partition

A=At} = {10 =1,,7,,, > T =L,k Ty, = D) (54)

of the interval [t., 8], including all the points of discontinuity of the matrix functions A(t), B(f) and C(¢)
and all the points tfdl e [t.,, 8], i, = 1,..., N, g = 1, 20f (5.2).
The functions Ay;( - ) are deéned by

Tj+l
Ayt m)= | max min (m, X[9, TI(B(vu+ C(t)) e (5.5)

L VE UHE
T

me R j=1,..k

Let us construct the functions ¢ j(4)(t*, m,v), (m,v) € Gj(4)(t*), meR,veR,j=k+ 1,k,...,1.
Ifj = k + 1, we define

Gh)={mv)y: m=0, 0sv=1}, @Y (1,,mv)=0, (mv)e G4 (1,) (5.6)

Suppose that for 1 <j + 1 <k + 1 domains ijl)(t.) and functions (pjf])(t., m, v) have already been
constructed. Put

hy(¥) =maxi,, £9'<1, i =1,..,N G7)

q q q

(if there is no i, such that £, < 1, then h (1) = 0,¢ = 1, 2).

The partition A, is chosen in such a way that for anyj = 1, ..., k only one of the following three
possibilities can occur

[1] hl('té'.,.]) = hl(T]), hz(’l:j+1) = hz(’Cj), that iS, the time Ti+1 is not a pOlIlt of the partition ANq
{t{7} (5.2),9 = 1,2;

2. h‘ﬁ(TjH) = hy(T) + 1, hy(T41) = hy(7), that is, the time 7;,, is a point 1,F1G+D] of the partition
AN 1 {tllll } 5 .

3. h1(1j+1) = hl(’c]) + 1, h2(’Cj+1) = hz(’r}) + 1, that iS, the time Tj+1 isa pOth t2[h2(‘tj+1)] of AN2{1'[2£2]},

We will first construct the domain Gj(")(t*) and the auxiliary function (p(;-‘ll(t., m,v),(m,v)e Gj(")(t*).

In case 1 we put

G0 =G, o83 (. m vy =0\ (1, mv), (mv)e GV (1) (5.8)
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In case 2 we define

"
GVt ) ={(m,v): m=m +XT[{", 91DIT], | e RA

’

u* =1, h=h(x)+1, (m,,v)eGH @) )

where u}ql (- ) are the norms adjoint to the norms ifl]( -)of (5.3),i;=1,...,N, 1 =1,2. The function
o® +1( - ) is then constructed as follows:

o\ a,.mv) =max<p5-4+)1(t*,m*,v), (m,v)e G\¥(t,) (5.10)

The maximum in (5.10) is calculated over all vectors m. corresponding to the given pair (m, v) €
(4)(t ) according to (5.9).
In case we define

GO = ((m vy 0= V<1, m=m, +X (4", 01071, 1e RA",

YD <v-v,, v, <V, h=hy(t))+1, (m,,v JeGRE)) (5.11)

o', mv)= max o (t.m,,v,), (mVv)eG(1,) (5.12)

The maximum in (5.12) is calculated over all pairs (m., v,) corresponding to the given pair (m, v) €
G{(t.) according to (5.11).
We now define

o, mv =P, Ne, G=6¢,) (5.13)
Vi, mv) = Ay (1, m)+ 94 (1, m,v), (mv)eGIV(r,)

The symbol {w(t,, - , -)} in (5.13) denotes the upper convex hull of the function y(z,, m, v); it is
constructed by convex closure with respect to the combined argument (m, v) in the domain G.

Continuing the induction up toj = 1, we obtain a domain G (4)(t.) and a function ¢ 4)(t., m,v), (m,
v) e G{9(,).
The domains G (4)(t ) will be convex compact subsets of R**1, and the functions (p], ., m v) and

Jll(t,, m, V) will be concave, bounded and at least upper semicontinuous [13, p. 51] on G (t ) j =
"Put
0 g i, plid g L)
o(x[t,[-1,D= X w"(Dy"x4"']) (5.14)
i=1
(AL D= max  (WEDR(AE)
12 ......
Define

ey (x[£21 16,1, A,) = o (2L - 1, ])+(m'v§2215,“‘)[x(x[:?[ L DA-v)+

+(m, X[9,2,1xl2,))+{t,,m, V)] (5.15)

We will show that the quantity e(4)( - ) (5.15) has the important properties of u- and v-stability [6,
PP- 208, 216; 7].

Theorem 5.1. (u- stablhty of e4)( - ).) Suppose the history of the motion of system (5.1) that has been
realized is x[t7[ - Jt.], % < t. < 9, and that a partition A[7] (5.4) of the time interval [t., 9] has been
chosen. Then, for any admissible realization v«ft.[ - t*) = {v.[t] € Q,t. < T < ¢*}, where t* = 1, €
A7), an adm1s51ble realization u[t.[ - Jt*) = {u[t] € P,t- <1 < t*} exists, such that, under the action
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of these controls, the realized history x{t%[ - J¢*] is such that
eI 1L 8,) ~ ey (1)1 11,1, 4) < 0

where A%.{1%} is the partition of the interval [t*, 9], ©¥ = G € A, j=1,...,k* k* = k=1, Theyy
= 9, generated by Ay.

Proof. By constructions (5.5)(5.13), the relationship between the partitions A¢{7;} and A}.{1*}, we
obtain identities

G0 =601,). oMt mv)= 0, ,m,v) (5.16)

We now define an auxiliary functional on the possible realizations x[t%[ - J¢*], besides the quantity
el - 1* 1AL (5.15)

oG L) L85 = oG- 1, D+ max (el 1 (A= v)+
(m,v)eG(1,)
+ (m, X[8,° )x(r* ) + 05 ¢, m, v)] (5.17)
It can be shown that
e(’4)(x[t?[ ° ]t‘ ]! t.l x[t. ]’ A‘k. ) = 3(4)(x[t?[ ‘ ]t‘ ], A'k‘ ) (5.18)
whatever history x[t%[ - J¢*] is realized.
Indeed, three cases are possible.
In the first case, we have ki, (t*) = hy(t+), ho(t*) = hy(t+). It then follows from (5.7) and (5.14) that o(x[t%[ - }¢*])
= o(x[t?[ - It-]), xx[t [ - }*]). Thus, comparing (5.15)—(5.17) and taking note of (5.8) (j = 1), we obtain the required

equality (5.18).
In the second case, we have hy(t*) = hy(te)+1, hy(t*) = hy(t-). Now, by (5.7) and (5.14), we have

e =M, o(elel[- 1 D = o (L2 1, D+l (DM )
(201 D =%L20 LD, h=hy(e*)
Then, by (5.15) and (5.16), a pair (m%, v) € G,9(t.) exists such that
e 1 1008 = oGl 1, D+ P (DM D +
+ ({001, DA-VO) +(m0, X[8,°1xlr* D+ 050 (1, .m0 V0), h=hy(s*) (5.19)
We now define vectors m® € R” and * € RP'™ from the conditions
(°, D{"‘x[r‘1>=u{,33(a;;‘|<l. D{MLefr* 1) = u{*1(D{Mxe 1)
m® =m0 + xT{s* 91D{HIT 0 (5.20)

We have (m°, v%) € G{(z.) (see (5.9)). It follows from (5.10) (j = 1) and (5.20) that ¢S 9(t., m% V%) = o (z.,
m®, v%). Consequently, by (5.17), taking (5.19) and (5.20) into consideration, we have

€{ay (0010, 10* 2l 1,48%, ) = e (x[£2] - 1r, DO - vO) + piF (DM Le e ) +
+0 ({201t D+ (m?, X[8,1* 1x(r* D+ 95V (¢, ,m? v0) = €4, (G121 - 1*), A) (5.21)
On the other hand, in the present case, it follows from the construction of the domain G (5.9) ang the
function @ (t., m, v) (5.10) that, for every pair (m, v) ¢ G,“(t.), vectors m.(m, v) € R" and I(m, v) € R h
= hy(#*) exist such that
(m, (m)eGEV @), wM*dm V<1, m, (mv)+ X7 81D 1(m,v)=m

o8 (1, ,m,v) = 05D (1, ,m, (m,V), V)
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Then, by (5.17), a pair (mq, Vo) € G,¥(t.) exists, for which
elay (L2011 8%, x(6° ), &) = S (1[0 1, D)+ (x (101 - 16, DDA - Vo) +
+(mg, X[0,63x{e* D +05Y (1,.mq,vg) (5.22)
For the vectors m.q = m,(my, vg) and ly(my, vo) corresponding to this pair (i, vp), the following relations hold
(im0, V) €G3 (e,). wMUp) <1, myg+ XT (e, 91D[M 1y =my (5:23)
05" (1, .mg.vo) = 05 (1, ,m0,v0)
In view of (5.16), (5.22) and (5.23), it now follows from (5.15) that
ey (U011 8, ) = 0L 1, ) + el L 16, DX = Vo) + Ko, D x(r* )+
+ (om0, XUO* W[ D+ @58 (1, mg o) = efay (L0 1 1, 1" X[ 145, (5.24)
Inequalities (5.21) and (5.24) prove equality (5.18) in the second case.
In the third case we have h;(t*) = hy(t.), hy(t*) = h(t-) + 1. In that case the time ¢* is a point £,"!] of the partition

Any {612}, b = hy(t*). According to (5.15), in view of (5.14) and (5.16), we see that a pair (m°, v°) € G,(z.)
exists such that

ey (XUOL- 1% LA ) = S (0L 1, D+ (mQ X[, 1x[e* ) +

+ 0592, m0 v0)+ max (x(xle7 - 1r, I, Y (DYl D) - VD) (5:25)

Define a pair (m°, v*) € G;(t.) and vector ° ¢ RP*!2 by the conditions
xR0 DA = VO + T DI (VO - v0) =

= max l[u(x[r?[ e, DA =)+ DM e (v - vO)] =

V?SVs
=max{x(x[s2[- 1, D, pY DX Y- v0) (5.26)
@Dt y=  max (L DY 1y = pi (DA v - v0)

plz""(l)sv -V,
m® =m? + XT[s*,01DLMIT (0
It then follows from (5.17), in view of (5.12), (5.25) and (5.26), that
efay UL I, et e 1A% ) = w20 T, DX - VO + (D v v+
+o OO0 1, D+ (m0 XU, Wl D+ 95 (1, .m0 V0 = ey UL 1 10, 4%,) (5.27)
In addition, in the third case, by (5.17), a pair (m°, v°) € G,)(¢.) exists such that
ey (KUY 1% X0 185, = ()L 1, D+ 2L [ 1, D (1= Vo) +
+(mg X8, e D+ 98 (1,,mg, Vo) (5.28)

And then, by the construction of the domain G,¥(z,) (5.11) and the function ¢{*z,, m, v) (5.12), a pair (m.,
V.0) € G2(4)(t.) and a vector [y e RV b = hy(t*) satisfying the conditions

0= V.0 =Vp. ugh]‘(lo)s Vo —V.0s My +XT[I.,13]D£"]T[0 =my
05" (¢,.m9. Vo) = 05 (1,,m,0,V,0) (529)

exist. Here the pair (mq, vo) of (5.28) and the sequence {(m,q, V.g), lp} of (5.29) are defined in the same order in
which previously, in the second case, we defined the pair (mq, vg) of (5.22) and the vectors m, g, Iy of (5.23). The
only difference is that, instead of the vector m,(m, v), which was defined in the second case by solving the problem
of the maximum of (5.10) as a function of the pair (m, v), solution of the problem of the maximum of (5.12) now
yields a pair (m,, v.) as a function of the pair (m, v).
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We now deduce from (5.15), in accordance with (5.16), (5.28) and (5.29), that

ey (x[e20 10 LA )= ol 1, D+ (2L - 16, 1) (1= vo ) + (g, DY x[17 ]y +

o, XI0,6” 1xle* D+ 95" (1m0, Vo) = {4y (<UL 11, 14 2" ], &%) (5:30)
The proof of this inequality relies on the chain of inequalities
max (x(x{r2[ ), D n§ (DI D1 - v,0) =

=) 1, = vo) + W DY Dvg - v,0) =
= (x(e2[ - t, D1 = vo) +{lo, DSMx(e* )
Inequalities (5.27) and (5.30) prove equality (5.18) in the last, third case.

We now consider W = W(t*; t,, x{t.], v.[t.[ - It*)) C R"—the domain of attainability by the time
t* for motions of system (5.1) generated from the position {¢,, xft,]} by any admissible control
ult,[ - 1t*) palred with v,[t,[ - ¢*). This set is a non-empty, convex, compact subset of R". Since the
functions @; )(t., m, v) are concave jointly in (m, v), it follows, reasoning according to the scheme of
(2, p. 120; 6 p. 320], which makes use of the Kakutam fixed-point theorem [14, p. 638], that we can
verify the existence of a pair {m°% v, 2 e E = [Gl (t ) x W] satisfying the following two conditions
simultaneously

w(x[e20- 10, (1= VO) +(m®, X[9,1* ]x°)+(p“” t,, m°v% =

B (m.v?e]g(l)s)(r.)[ldem(m - m,v = V)l (531)

(m®, X[0,r*1x%) = mi‘{}(mo, X[, ]x) (5.32)

The abbreviation “Idem” on the right of the equality denotes the expression obtained from the
expressmn on the left of the equality by making the substitution shown in brackets.

Letu [t.[ J¢*) be an admissible control which, paired with vt - ]t*) takes the motion of the system
toa pomtx € W. When that is done the realized history of the motion is x°[#."[ - J¢*].

Then, usmg the Cauchy formula and the legitimacy of performing the minimization operation under
the integral sign, we deduce from (5.32) that

'f (m®, X[8, 1Bt t])dr = | min(m®, X[9, t1B(t)u)dt (5.33)

t,

*

and by (5.17), noting (5.31), we obtain
ey (X000 1,100 20, A%, ) = (0L 1, 1) (1= VO + (mO, X[9,1, )x(r, 1) +

+o (00 1. D+ j (m®, X[9, T B[]+ C(v)v [T))dt+ 05 (r,,m°,VO) (5.34)

3

»

On the other hand, since (m%, v°) € G (4)(t ), it follows from (5.15), as the upper convex hull
¢, ( ) is a majorant for the functlon \I’1 () (5.13), that

eay(e2[ 16,1, A,) = o (x[e2[ 1, ) + % (2[00 - 1, D (1 - vO) +
+Hm®, X[0,¢,1x[2, 1)+ Ay, (1,,m®) + 5 (1,, m°, v°) (5.35)

The truth of Theorem 5.1 now follows from (5.33)-(5.35), taking (5.5) (fj = 1) and (5.18) into
consideration.

Theorem 5.2 (v-stability of e)( - }). Suppose that the history £t - Jt.), 2 < ¢, < 9 of a motion of
system (5.1) has been realized and that a partition A.{7;} (5.4) of the interval [t,, 19] has been prescribed.
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Then, for any admissible realization u,{t.{ - }t*, where t* = 1, € A {1}, an admissible realization
v[t.[ - It*), exists such that

ey (X[22[ 1071, A%, ) — ey (x[£21 - 18,1,4,) = O (5.36)

Proof. By (5.13), (5.15) and by Carathéodory’s theorem [13, p. 155], given the upper convex hill
¢( - ), under the present conditions a pair (my, vg) € G¥(.) exists such that

ey (K101 16,1, A ) = O (x[e20- 10, 1) + w(x[e2[ - e, D (1= Vo) +
+(mg, X[9,2,1x[2,1) + Ay, (1, mg) + 05V (¢, mg, Vo) (5.37)

Now, as in the proof of Theorem 5.1, we consider the auxiliary quantity e'(4)(x[t9[ -, %, x[t*], A%e)
(5.17).

Relying on measurable selection theorem [15], let us take an admissible realization vg[t,[ - J¢*) that
satisfies the condition

‘J' (my, X[9,T]C(DYvolthdr = 'j man(mo,X[ﬁ,‘t]C(‘t)u ydt (5.38)

-

Let x{t9[ - }¢*] be the history of the motion of system (5.1) realized under the action of the controls
wft.[ - 1t*) and vgft,[ - J¢*). It then follows from (5.17), by using the Cauchy formula, that

elay (RO T, 1 1* 20, &, )= (100 11,1) (1= Vo) + (g, X[9,8, 1xl2, 1) +

+o(x[20- ), D) +'j (mg, X[9,T1B(TYu, [T]+ C(D)v o [T]))dT + 057 (1,,mg, Vo) (5.39)

It now follows from (5.37) and (5.39), in accordance with (5.5) (j = 1) and (5.38) and in view of (5.18)
(which is proved in exactly the same way as in the proof of Theorem 5.1), that inequality (5.36) is true.
This completes the proof of Theorem 5.2.

If we note that, by (5.6)

ey (K100 101, 8) = Y4y (K[ - 10])
we obtain the following proposition as a corollary of Theorems 5.1 and 5.2.

Theorem 5.3. For any history x[tY[ - | £.], t? < t, < © of the motion of system (5.1) and any sequence
of partitions Ax{7;} (5.4) of the mesh & = max;(t;4; - 1)) (k = 1,2,...) such that lim §; = 0, k — oo,
the following equality holds

kll_f)‘l 3(4)("[‘?[ LA = P?4)(X[f?[ N

where p{a ([t - Jt.]) is the value of game (5.1)~(5.3).
We have thus established that the procedure described above for calculating e(4)( - ) on the basis of
the functions q>j(4)( - ), which are obtained by convex closure of the functions %(4)( -) in domains G,

with respect to the pair of arguments (m, v), produces the value p{?( - ) of game (5.1)«(5.3).

The example in the next section will show that the convex closure must be carried out with respect
to the pair (m, v). In that example, convex closure with respect to m alone for each fixed v will not
yield the value of the game.

6. EXAMPLE

Consider the following problem of type (5.1)-(5.3).
Let the system be described by the equation

de/di= f(u+g(tw, °=0<r<9=3 (6.1)

x=(x|,x2)eR2, u=(u,,u2)eR2, v={,Vy)E R?
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where u and v obey constraints

wf+ud <1, vl+vi=<i (6.2)
and f{¢) and g(¢) are scalar functions
2, 01« 1, 0st<l1
fH= , &)= 6.3
l, 1=¢=<3 2, 1=¢=3 ©3)
The performance index is given as a functional
Y = Y(x[Of - 131) = max{lx, [0, | x5 [2]1} +|x, {3]] (6.4)

where | - | denotes the modulus of the scalar quantity, Ny = 1,1 =9 =3, D,V = [1 0], N, = 2,51 = 7 = 0,
64 = 2; DM = D, = [0 1].

Let @j(t-, m, v) be upper convex hulls with respect to (m, v) constructed for problem (6.1)—(6.4) in accordance
with the procedure (5.4)—(5.13); let e(-, Ay) denote the quantity (5.15) obtained in this case, and let p( - ) be the
value of game (6.1)—(6.4).

Let ¢*(t-, m, v) denote the functions obtained, using (6.1)~(6.4), by a procedure similar to (5.4)—(5.13) but taking
upper convex hulls with respect to m only, for each fixed v € [0, 1]; let e*(-, A;) denote the quantity calculated like
(5.15) from the functions @j(z-, m, v), and let p*( - ) be the limit of e*(, ;) (k — ) as the mesh of the partition
A, tends to zero.

Let t* = ¢t = 0. Prescribe a partition A; {7} of the time interval [0, 3] which includes the times 0, 1, 2, 3.

Carrying out the calculations, we obtain

G1(0) ={(m=(m),my),v): 0< V<L, [m|<1, Imy|<V) 6.5)

¢1(0,m,v)= —1/m,2 +m§ +(1+ W2 -Dv)+1
(pf(O,m,V):—\/ml2 +m? +«]l+v2 +1, (m,v)eG(0)

It can be seen that the domain G,(0) does not have the homogeneity property (4.5), and the function ¢*(0, m,
v) is neither concave nor homogeneous with respect to the pair (m, v).

Note that in this problem the limits p( - ) and p*( - ) can be calculated fairly easily by an analytical procedure
in terms of the quantities e(-, A;) and e*(:, A;). This may be seen from (6.5).

Let x[t%] = 2,x,]t"] = 2 be a given initial state.

Then, using (6.5), we compute

P(x[0[-10]=(2.2)) = 6~y 2(vZ — 1) ~ 5,089 > p* (x{0[ - J0) = 5 (6.6)

The strict inequality (6.6) shows that p*( - ) is not the value of game (6.1)—(6.4).

The control process generated by the constructions described above was modelled on a computer for problem
(6.1)-(6.4). The results of the numerical experiment corroborate our theoretical conclusions. For example, accurate
simulation of the control process for optimum strategies °( - ) and v°( - ) that are extremum strategies for p( - )
gave v = 5.089 = p([0[ - ]0]). In the case of the optimum strategy 4% -') and the extremum strategy v*( - ) for
p*( - ), the result was y = 5.28 > p(x[0[ - ]0]).

This research was carried out with financial support from the International Science Foundation
(NMS300) and the Russian Foundation for Basic Research (94-01-00310).
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